In this work, the process of designing and simulating optical sensors based on photonic crystal (PC) micro-ring resonators (MRRs) has been investigated. According to the PC type, different waveguides and resonators can be designed, and various topologies can be proposed from their combination, for optical sensor applications. Here, the investigated MRR is of the symmetrical micro-hexagonal ring resonator (MHRR) type. Different arrays of MHRR arrangement have been designed to investigate their effects on the output spectrum. The results of the design and simulation of different topologies have been analyzed and compared with other numerical researches. Considering all the necessary aspects of PC optical sensors, a detailed and comprehensive algorithm has been presented for designing these devices and choosing the optimal structure. In a more complementary process, the effects of reflector rods have been investigated, which indicates the existence of similarity and compatibility in the design between the distance of reflector rods and the length of MHRRs to obtain the optimal structure. Finally, the effect of different values of lattice constant and radius of dielectric rods on FWHM, transmission (TR) and resonant wavelength is studied, and the most optimal mode is presented. In order to measure the performance of the proposed optimal sensor, its application for gas detection has been analyzed. TR, FWHM, quality factor (QF), sensitivity (S) and figure of merit (FOM) of the proposed sensor were equal to 96%, 0.31 nm, 2636, 6451 nm/RIU and 2960 RIU−1 respectively. An examination of results from similar research indicates a rational and effective approach for generating diverse topologies, aiming to attain the most optimal configuration for optical sensors employing MRRs. Furthermore, employing a systematic design process based on established principles and the proposed algorithm helps prevent arbitrary parameter variations, facilitating the attainment of desired outcomes in a more streamlined and efficient manner. Given the comprehensive nature of this research, it presents a viable solution for designing optical devices based on MRRs for use in optical integrated circuits (OICs) applications.