In recent years, the optical control of exchange interactions has emerged as an exciting new direction in the study of the ultrafast optical control of magnetic order. Here we review recent theoretical works on antiferromagnetic systems, devoted to (i) simulating the ultrafast control of exchange interactions, (ii) modeling the strongly nonequilibrium response of the magnetic order and (iii) the relation with relevant experimental works developed in parallel. In addition to the excitation of spin precession, we discuss examples of rapid cooling and the control of ultrafast coherent longitudinal spin dynamics in response to femtosecond optically induced perturbations of exchange interactions. These elucidate the potential for exploiting the control of exchange interactions to find new scenarios for both faster and more energy-efficient manipulation of magnetism.