“…This technique has been used, for example, to study decoherence effects in the excitation process (Höfer et al, 1997;Ogawa et al, 1997;Reutzel et al, 2019), to shed light on the physics of high-temperature superconductors (Avigo et al, 2013;Parham et al, 2017;Smallwood et al, 2012;Yang et al, 2014Yang et al, , 2019, to track the melting and recovery of charge-density wave orders (Hellmann et al, 2010(Hellmann et al, , 2012Perfetti et al, 2006;Rettig et al, 2016;Rohwer et al, 2011;Schmitt et al, 2008;Zong et al, 2019b), to directly probe excitonic states (Cui et al, 2014;Madéo et al, 2020), to measure the relaxation dynamics of photocurrents (Güdde and Höfer, 2021;Reimann et al, 2018) and the coupling between electronic and lattice degrees of freedom (Gerber et al, 2017;Kemper et al, 2017;Na et al, 2019). tr-ARPES also permits the detection of transiently populated topological states (Belopolski et al, 2017;Sobota et al, 2012Sobota et al, , 2013Zhang et al, 2017), observation of Floquet-Bloch states (Mahmood et al, 2016;Wang et al, 2013), and identification of nonthermal electronic regimes (Gierz et al, 2013;Johannsen et al, 2013;Na et al, 2020). An exciting prospect is the implementation of new detection schemes extending time-and momentumresolved microscopy to FELs (Kutnyakhov et al, 2020).…”