The compound 4-(N,N -dimethylamino)benzonitrile (DMABN) represents the archetypal system for dual fluorescence, a rare photophysical phenomenon in which a given fluorophore shows two distinct emission bands. Despite extensive studies, the underlying mechanism remains the subject of debate. In the present contribution, we address this issue by simulating the excited-state relaxation process of DMABN as it occurs in polar solution. The potential energy surfaces for the system are constructed with the use of the additive QM/MM method, and the coupled dynamics of the electronic wavefunction and the nuclei is propagated with the semiclassical fewest switches surface hopping method. The DMABN molecule, which comprises the QM subsystem, is treated with the use of the second-order algebraic diagrammatic