Regarding the confinement of light at nanoscale dimensions in plasmonic structures, we try to show the impact of hot atomic vapor spectroscopy on a miniaturized scale. In such a combined structure, resonant coupling of the atom to plasmonic mode provides diverse ways to control the optical response of the system. We fabricate an atomic plasmonic cell based on Rubidium atomic vapor and gold plasmonic thin film onto the Kretschmann setup to introduce resonant coupling (EIT-like) of atom-plasmons as a tunable all-optical bandpass filter, switch, or logic gates. These all-optical devices such as NOR and XNOR logic gates are well done based on the filter by incidence angle of light, temperature as well as the external magnetic field. We believe the possibility of easy modulation of atomic susceptibility, not only through direct alteration on atoms but also through common methods available for modulation of plasmonic mode, has the potential to design and fabricate modern all-optical devices.