We theoretically investigate the role of intraband transitions in laser-induced carrier generation for different photon energy regimes: (i) strongly off resonant, (ii) multiphoton resonant, and (iii) resonant conditions. Based on the analysis for the strongly off resonant and multiphoton resonant cases, we find that intraband transitions strongly enhance photocarrier generation in both multiphoton absorption and tunneling excitation regimes, and thus, they are indispensable for describing the nonlinear photocarrier generation processes. Furthermore, we find that intraband transitions enhance photocarrier generation even in the resonant condition, opening additional multiphoton excitation channels once the laser irradiation becomes sufficiently strong. The above findings suggest a potential for efficient control of photocarrier generation via multicolor laser pulses through optimization of the contributions from intraband transitions.