Photoinduced intermolecular excited-state proton transfer (ESPT) reactions are ubiquitous in chemistry and biology. ESPT reactions are extremely sensitive to the nature of water molecules in its microenvironment and thus serve as a sensitive reporter for the water structure and dynamics in a system. Herein, the photoinduced intermolecular ESPT reaction of 8-hydroxypyrene-1,3,5-trisulfonic acid (HPTS, also known as pyranine) has been investigated in various DMSO/water mixtures by using steady-state and time-resolved emission spectroscopy. The DMSO/water binary mixture yields an interesting and anomalous behavior for the proton transfer reaction dynamics of HPTS at a mole fraction of DMSO (X ) of 0.41-0.51, which has also been previously investigated and projected as an anomalous region by molecular dynamics simulation and other experimental techniques. The extreme slowdown of the proton transfer reaction observed at X =0.41-0.51 has been attributed to the slow solvation dynamics, as well as the non-availability of free water molecules at this composition, which are required to solvate the newly generated proton. These observations have been also corroborated by time-resolved area-normalized emission spectra. The dimensionality of the proton diffusion process has been investigated by analyzing the geminate recombination process, and is found to be significantly different in DMSO/water mixtures (X =0.41-0.51) compared with three-dimensional proton diffusion in neat water.