Background:
Advances in organ transplantation were made after the discovery of the pure form of cyclosporine by Dr Jean Borel in the 1970s. In fact, in clinical practice achieving a delicate balance in circulating immunosuppressive necessitate focus on the difficult task of post-transplant therapeutic drug monitoring.
Objective:
The purpose of this study was to determine the pharmacologic properties of cyclosporine-tacrolimus, detection methods, and the effects on the activity of cytochrome P450 enzymes when prescribing the most efficient treatments in forms of polypharmacy for the recipients of heart transplantation.
Methods:
Scientific literature on the interactions of tacrolimus and cyclosporine with human cytochrome P450 enzymes was searched using PUBMED.Gov (https://pubmed.ncbi.nlm.nih.gov/), Web of Science, and Scopus.
Results:
Prescription immunosuppressive drugs based on polypharmacy accompanied by induction agents could result in hidden neurotoxicity and nephrotoxicity. A literature search shows that cyclosporine prescription with antihypertensives drugs needs close monitoring. Co-administration of tacrolimus and diltiazem or verapamil needs a decrease in the tacrolimus dose by 20-50%. Vigilant attention to the lowest possible statin dose is needed when coadministered with fluvastatin or pravastatin. Polypharmacy based on ticlopidine, clopidogrel, and cyclosporine or tacrolimus needs monitoring of immunosuppressive drug levels for several months. A prescription with clotrimazole or fluconazole needs close monitoring, and itraconazole or ketoconazole needs to reduce the initial dose by 50%. Combination with nefazodone needs to be avoided, and alternative drugs such as sertraline or citalopram could be prescribed in addition to further monitoring consideration. In prescription with phenytoin, the bound and free phenytoin levels need close monitoring.
Conclusion:
Polypharmacy based on tacrolimus or cyclosporine needs vigilant therapeutic drug monitoring due to the cytochrome P450 enzymes associated with biochemical variables in metabolic pathways. Further attention to polypharmacy should be given to circulate drugs that could hide pharmacokinetics interactions associated with infections, malignancies, chronic kidney disease, and rejection after organ transplantation.