A comprehensive, yet simple, theoretical model for droplet microemulsions is presented. The model combines thermodynamics of self-assembly with bending elasticity theory and relates microemulsion properties, such as average droplet size, polydispersity, interfacial tension and solubilisation capacity with the three bending elasticity constants, spontaneous curvature (H 0 ), bending rigidity (k c ) and saddle-splay constant (k c ). In addition, the selfassociation entropy constant (k s ) explicitly determines various microemulsion properties. The average droplet size is shown to increase with increasing effective bending constant, defined as k ef f ¼ 2k c þ k c þ k s ,a sw e l la sw i t hd e c r e a s i n gm a g n i t u d e so fH 0 .T h ep o l y d i spersity decreases with increasing values of k eff , but does not at all depend on H 0 .Themodel predicts ultra-low interfacial tensions, the values of which decrease considerably with increasing droplet radius, in agreement with experiments. The solubilisation capacity increases as the number of droplets is increased with increasing surfactant concentration. In addition, an enhanced solubilisation effect is obtained as the size of the droplets increases with increasing surfactant concentration, as a result of self-association entropy effects. It is demonstrated that self-association entropy effects favour smaller droplet size as well as larger droplet polydispersity.