Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In the field of sensing, the development of sensors with high sensitivity, accuracy, selectivity, sustainability, simplicity, and low cost remains a key focus. Over the past decades, optical and electrochemical sensors based on molecular imprinting techniques have garnered significant attention due to the above advantages. Molecular imprinting technology utilizes molecularly imprinted polymers (MIPs) to mimic the specific recognition capabilities of enzymes or antibodies for target molecules. Recently, MIP-based sensors rooting in signal amplification techniques have been employed to enhance molecular detection level and the quantitative ability for environmental pollutants, biomolecules, therapeutic compounds, bacteria, and viruses. The signal amplification techniques involved in MIP-based sensors mainly cover nucleic acid chain amplification, enzyme-catalyzed cascade, introduction of high-performance nanomaterials, and rapid chemical reactions. The amplified analytical signals are centered around electrochemical, fluorescence, colorimetric, and surface-enhanced Raman techniques, which can effectively realize the determination of some low-abundance targets in biological samples. This review highlights the recent advancements of electrochemical/optical sensors based on molecular imprinting integrated with various signal amplification strategies and their dedication to the study of trace biomolecules. Finally, future research directions on developing multidimensional output signals of MIP-based sensors and introducing multiple signal amplification strategies are proposed. Graphical abstract
In the field of sensing, the development of sensors with high sensitivity, accuracy, selectivity, sustainability, simplicity, and low cost remains a key focus. Over the past decades, optical and electrochemical sensors based on molecular imprinting techniques have garnered significant attention due to the above advantages. Molecular imprinting technology utilizes molecularly imprinted polymers (MIPs) to mimic the specific recognition capabilities of enzymes or antibodies for target molecules. Recently, MIP-based sensors rooting in signal amplification techniques have been employed to enhance molecular detection level and the quantitative ability for environmental pollutants, biomolecules, therapeutic compounds, bacteria, and viruses. The signal amplification techniques involved in MIP-based sensors mainly cover nucleic acid chain amplification, enzyme-catalyzed cascade, introduction of high-performance nanomaterials, and rapid chemical reactions. The amplified analytical signals are centered around electrochemical, fluorescence, colorimetric, and surface-enhanced Raman techniques, which can effectively realize the determination of some low-abundance targets in biological samples. This review highlights the recent advancements of electrochemical/optical sensors based on molecular imprinting integrated with various signal amplification strategies and their dedication to the study of trace biomolecules. Finally, future research directions on developing multidimensional output signals of MIP-based sensors and introducing multiple signal amplification strategies are proposed. Graphical abstract
A novel self-powered biosensor has been developed for the detection of chloramphenicol (CAP) based on difunctional triple helix molecular switch (THMS)-mediated DNA walkers. The biosensor utilizes the CAP aptamer as the recognition element, a DNA walker and capacitor as dual signal amplification strategies, and a digital multimeter (DMM) as the data readout equipment. In the presence of the target, the CAP aptamer in THMS specifically binds with CAP to release a signal transduction probe (STP) and opens the H1 hairpin structure in the biocathode to trigger the DNA walker and form a double-stranded DNA structure. Then, [Ru(NH 3 ) 6 ] 3+ is electrostatically adsorbed on the double-stranded DNA structure through electrostatic adsorption and reduced to [Ru(NH 3 ) 6 ] 2+ at the biocathode by accepting electrons entering at the bioanode. In DNA walkers, more double-stranded structures are formed, and a higher open-circuit voltage (E OCV ) is observed. This self-powered biosensor with a detection limit (LOD) of 0.012 fM exhibits ultrasensitive CAP detection in milk in the range of 0.1−10 4 fM as well as excellent selectivity, stability, and reproducibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.