The restricted number of materials available for additive manufacturing (AM) technologies is a determining impediment to AM growing into sectors and providing supply chain relief. AM, in particular, is regarded as a trustworthy manufacturing technology to replace the traditional ones for Ti alloy components. Furthermore, the AM processability of Ti alloys and their features, such as microstructure, texture, and mechanical properties, is strongly dependent on the chemical composition of the processed alloy. It is essential to consider the ultimate applications as well. β Ti alloys are gaining popularity in the biomedical industry, while α + β Ti alloys are increasingly utilized for producing components in the automotive and aerospace sectors. Consequently, the topic has garnered considerable interest, and the current text reviews the advances during the last 10 years in this area to facilitate the pathway from the demanded Ti alloy to the best‐fit AM procedure. While systematically reviewing the works published in the literature, the current text attempts to establish a link between the production method, feedstock type, chemical composition, and the ultimate application. This review also features practical applications of Ti components produced by metal AM methods and offers prospective possibilities and industrial applications.