Ultrasound is a mechanical wave propagating in tissue which is influenced in its propagation behavior by the locally prevailing acousto-mechanical conditions. By suitable processing of the back-scattered signals received by the ultrasound transducer, tissue parameters such as local bulk modulus, mass density, speed of sound, isotropic scattering coefficient, and also the locally acting tissue absorption can be inferred. A discipline that has received increasing attention in the medical ultrasonic imaging discipline and its scientific publications in recent years is quantitative ultrasound (QUS) which tries to estimate with great accuracy these local acting tissue parameters. In this paper we analyze different algorithms for estimation of high spatial resolution tissue absorption parameters. On the one hand, there is a simple absorption estimator based on the evaluation of the quotient of the power density spectra calculated for different depth regions (spectral-log-difference estimator), which, however, assumes a linearly with frequency increasing absorption, this is contrasted with an estimator which also allows to estimate a polynomial increase of the absorption with frequency (method-of-moments estimator). Since a closed-form solution cannot be given for this, a maximum-likelihood estimator for which there is always an estimate that can be computed numerically efficiently is developed. The results, tissue attenuation, are presented as a color-coded overlay on conventional B-mode ultrasound images showing only morphology.