Study Design:
Narrative review.
Objective:
The objective of this study is to explore and evaluate the role of novel technologies in enhancing the diagnosis, surgical precision, and rehabilitation of cervical spine trauma, and to discuss their potential impact on clinical outcomes.
Summary of Background Data:
Traumatic cervical spine injuries are challenging to manage due to their complex anatomy, the potential for long-term disability, and severe neurological deficits. Traditional management approaches are being supplemented by emerging technologies that promise to improve patient care and outcomes.
Methods:
A literature review was conducted to identify and analyze advancements in imaging, navigation, robotics, and wearable technologies in the context of cervical spine trauma. The review focuses on the potential of these technologies to improve early detection, surgical accuracy, and postoperative recovery.
Results:
Technological innovations, including advanced imaging techniques, machine learning for diagnostics, augmented reality, and robotic-assisted surgery, are transforming the management of cervical spine trauma. These tools contribute to more efficient, accurate, and personalized treatment approaches, potentially improving clinical outcomes and reducing patient care burdens.
Conclusions:
Although these technologies hold great promise, challenges such as implementation costs and the need for specialized training must be addressed. With continued research and interdisciplinary collaboration, these advancements can significantly enhance the management of cervical spine trauma, improving patient recovery and quality of life.
Level of Evidence:
Level V.