Natural extracts used in fine fragrances (alcoholic perfumes) are rare and precious. As such, they represent an interesting target for fraudulent practices called adulterations. Absolutes, important materials used in the creation of perfumes, are obtained by organic solvent extraction of raw plant materials. Because the nonvolatile part of these natural extracts is not normalized and scarcely reported, highlighting potential adulterations present in this fraction appears highly challenging. For the first time, we investigated the use of nontargeted UHPLC-ToFMS metabolomics for this purpose, considering Viola odorata l., a plant largely used in the perfume industry, as a model. Significant differences in the metabolic fingerprints of the violet leaf absolutes were evidenced according to geographical locations, and/or adulterations. Additionally, markers of the geographical origin were detected through their molecular weight/most probable molecular formula and retention time, while adulterations were statistically validated. In this study, we thus clearly demonstrated the efficiency of UHPLC-ToFMS-based metabolomics in accelerating both the identification of the origin of raw materials as well as the search for potential adulterations in absolutes, natural products of high added value.