A model-based non destructive testing (NDT) method is proposed for damage identification in elastic structures, incorporating computational time reversal (TR) analysis. Identification is performed by advancing elastic wave signals, measured at discrete sensor locations, backward in time. In contrast to a previous study, which was purely numerical and employed only synthesized data, here an experimental system with displacement sensors is used to provide physical measurements at the sensor locations. The performance of the system is demonstrated by considering two problems of a thin metal plate in a plane stress state. The first problem, which represents passive damage identification, consists in finding the location of a small impact region from remote measurements. The second problem is the identification of the location of a square hole in the plate. The difficulties one encounters in applying this identification method and ways to overcome them are described. It is concluded that while this is a viable model-based identifica-