The measurement of solid propellant burning rates using ultrasound requires the simultaneous acquisition and analysis of ultrasonic signals and pressure data simultaneously in a wide range of pressure values during the process of propellant burning. Recently, this method has been proposed as an effective approach based on an analysis of full waveforms of ultrasonic signals together with a laboratory prototype system in which the proposed approach has been implemented. However, this prototype system had limitations in terms of data processing speed and signal processing procedures. To overcome such limitations, in the present study, we develop a dedicated, high speed system that can acquire ultrasonic full waveforms and pressure data up to 2,000 times per second. Our system can also estimate the burning rate as a function of pressure using a special software based on ultrasonic full waveform analysis. This paper describes the approach adopted in this high speed system, along with the burning rate measurement results obtained from three propellants with different burning characteristics.