The temperature dependences of ultrasound absorption and propagation speed in simple semimetals, semiconductors, and semiconductor compounds have been studied in this article. Experimental and theoretical results testify to the microheterogeneity of semimetals and semiconductor melts. Generalization and analysis of experimental data on the absorption and propagation speed of ultrasound in melts based on D.I. Mendeleev periodic law clearly indicate the presence of micro-groups of atoms (clusters) in them, microheterogenizing melts of semimetals and semiconductors. The urgency of this problem is predetermined by the problem of the liquid state of matter. The dependence of ultrasound absorption and propagation speed on temperature is measured using several groups of samples in paper, each group is heated to a different temperature. It is proved that melts have clustered in their atomic matrix, and so melts with semiconductor properties are micro-inhomogeneous. These results are needed to scale melt sonication to an industrial scale and are needed to provide valuable new insights into temperature dependencies of ultrasound absorption.