This paper presents the continuous flow MHD(magnetohydrodynamic) micropump with side walled electrodes using Lorentz force, which is perpendicular to both magnetic and electric fields, for the application of microfluidic systems. A theoretically simplified MHD flow model includes the theory of fluid dynamics and electromagnetics and it is based upon the steady state, incompressible and fully developed laminar flow theory. A numerical analysis with the finite difference method is employed for solving the velocity profile of the working fluid across the microchannel under various operation currents and magnetic flux densities. In addition, the commercial CFD code called CFD-ACE has been utilized for simulating the MHD micropump. When the program was run(CFD-ACE), the applied current and magnetic flux density were set to be the variables that affected the performance of the MHD micropump. The MHD micropump was fabricated by using MEMS technology. The performance of the MHD micropump was obtained by measuring the flow rate as the applied DC current was changed from 0 to 1mA at 4900 and 3300 Gauss for the electrodes with the lengths of 5000, 7500 and 10000 ㎛, respectively. The experimental results were compared with the analytical and the numerical results. In addition, with the theoretical analysis and the preliminary experiments, we propose a final model for a simple and new MHD micropump, which could be applicable to microfluidic systems.