Silver is subject to significant interferences caused by high chloride concentrations in electrothermal atomic absorption spectrometry, thus its direct determination in aqua regia leaches from soils, sediments, and sludges is very difficult, especially when using instrumentation equipped with deuterium-lamp background correction (D2). In this study, the interference of the aqua regia medium was successfully eliminated using Pd-citric acid chemical modifier. This chemical modifier was found to be the most advantageous in comparison with Pd mixture with ascorbic acid, tartaric acid, or citric acid-Li based on its ability to suppress the interference originating from different chloride matrix. Palladium increases the analyte stability; citric acid serves as a reducing reagent, and furthermore, it helps to remove the interfering chlorides by forming HCl, in the drying step of the electrothermal program. In the presence of the modifier, the pyrolysis temperature can be adjusted up to 1,000 °C with no loss of the analyte. The obtained limit of detection and characteristic mass were 5 ng g(-1) and 1.7 pg, respectively. The accuracy of the method was verified by means of six different reference samples and by comparing the results of the analysis of real samples with those obtained by inductively coupled plasma orthogonal acceleration time-of-flight mass spectrometer. The proposed method was applied to the Ag determination in soils, sediments, and sewage sludge samples from the Pardubice region in Czech Republic.