Photocatalytic degradation of organic pollutants is an effective way to overcome environmental pollution. During the past few years, carbon materials have demonstrated great potential to improve photocatalytic performance of ZnO nanomaterials. This review will comment on recent developments of carbon materials (including fullerene, carbon nanotube, and graphene) coupling to improve photocatalytic performance of ZnO for photodegradatation of organic pollutants. The effects of carbon materials on enhancing photocatalytic performance of ZnO include enhancing structure stability, increasing amounts of active sites of pollutant adsorption, boosting electron acceptor formation and transport, enhancing photosensitization, narrowing band gap, etc. Moreover, basic mechanisms how carbon materials enhance photocatalytic activity of ZnO materials are discussed according to the interaction between ZnO and carbon materials. Finally, concluding remarks and current challenges are highlighted with perspectives for future developments of ZnO-based carbon photocatalysts. This review aims at recent research advances on ZnO-based carbon photocatalysts developed for photocatalysis of organic contaminant degradation.