Ultrasound-Based Machine Learning-Aided Detection of Uterine Fibroids: Integrating Vision Transformer for Improved Analysis
U. P. Prinith Kaveramma,
U. Snekhalatha,
Varshini Karthik
et al.
Abstract:The primary objective of this study is to segment the uterine fibroids (leiomyoma) from the ultrasound images of the uterus through semantic segmentation, followed by second-order statistical feature extraction using the Gray-level Co-occurrence Matrix (GLCM). The next objective of the study is to compare the performance of the state-of-the-art method namely Vision Transformer (ViT) with three different machine learning (ML) classifiers such as the Support Vector Machine (SVM), Logistic Regression (LR) and [Fo… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.