Accurate and early detection of malignant pelvic mass is important for a suitable referral, triage, and for further care for the women diagnosed with a pelvic mass. Several deep learning (DL) methods have been proposed to detect pelvic masses but other methods cannot provide sufficient accuracy and increase the computational time while classifying the pelvic mass. To overcome these issues, in this manuscript, the evolutionary gravitational neocognitron neural network optimized with nomadic people optimizer for gynecological abdominal pelvic masses classification is proposed for classifying the pelvic masses (EGNNN-NPOA-PM-UI). The real time ultrasound pelvic mass images are augmented using random transformation. Then the augmented images are given to the 3D Tsallis entropy-based multilevel thresholding technique for extraction of the ROI region and its features are further extracted with the help of fast discrete curvelet transform with the wrapping (FDCT-WRP) method. Therefore, in this work, EGNNN optimized with nomadic people optimizer (NPOA) was utilized for classifying the gynecological abdominal pelvic masses. It was executed in PYTHON and the efficiency of the proposed method analyzed under several performance metrics. The proposed EGNNN-NPOA-PM-UI methods attained 99.8%. Ultrasound image analysis using the proposed EGNNN-NPOA-PM-UI methods can accurately predict pelvic masses analyzed with the existing methods.