Coronavirus disease 2019 (COVID-19) pneumonia has erupted worldwide, causing massive population deaths and huge economic losses. In clinic, lung ultrasound (LUS) plays an important role in the auxiliary diagnosis of COVID-19 pneumonia. However, the lack of medical resources leads to the low using efficiency of the LUS, to address this problem, a novel automated LUS scoring system for evaluating COVID-19 pneumonia based on the two-stage cascaded deep learning model was proposed in this paper. 18,330 LUS images collected from 26 COVID-19 pneumonia patients were successfully assigned scores by two experienced doctors according to the designed four-level scoring standard for training the model. At the first stage, we made a secondary selection of these scored images through five ResNet-50 models and five-fold cross validation to obtain the available 12,949 LUS images which were highly relevant to the initial scoring results. At the second stage, three deep learning models including ResNet-50, Vgg-19, and GoogLeNet were formed the cascaded scored model and trained using the new dataset, whose predictive result was obtained by the voting mechanism. In addition, 1000 LUS images collected another 5 COVID-19 pneumonia patients were employed to test the model. Experiments results showed that the automated LUS scoring model was evaluated in terms of accuracy, sensitivity, specificity, and F1-score, being 96.1%, 96.3%, 98.8%, and 96.1%, respectively. They proved the proposed two-stage cascaded deep learning model could automatically score an LUS image, which has great potential for application to the clinics on various occasions.