Tumor embolization therapy has attracted great attention due to its high efficiency in inhibiting tumor growth by cutting off tumor nutrition and oxygen supply by the embolic agent. Although transcatheter arterial embolization (TAE) is the mainstream technique in the clinic, there are still some limitations to be considered, especially the existence of high risks and complications. Recently, nanomaterials have drawn wide attention in disease diagnosis, drug delivery, and new types of therapies, such as photothermal therapy and photodynamic therapy, owing to their unique optical, thermal, convertible and in vivo transport properties. Furthermore, the utilization of nanoplatforms in tumor non-interventional embolization therapy has attracted the attention of researchers. Herein, the recent advances in this area are summarized in this review, which revealed three different types of nanoparticle strategies: (1) nanoparticles with active targeting effects or stimuli responsiveness (ultrasound and photothermal) for the safe delivery and responsive release of thrombin; (2) tumor microenvironment (copper and phosphate, acidity and GSH/H2O2)-responsive nanoparticles for embolization therapy with high specificity; and (3) peptide-based nanoparticles with mimic functions and excellent biocompatibility for tumor embolization therapy. The benefits and limitations of each kind of nanoparticle in tumor non-interventional embolization therapy will be highlighted. Investigations of nanoplatforms are undoubtedly of great significance, and some advanced nanoplatform systems have arrived at a new height and show potential applications in practical applications.