In digital media art, expressive force is an important art form of media. This paper studies digital images that have the same effect when applied to media art. The research object is media art images, and the application effect of the proposed algorithm is related to the media art images. The development of digital image technology has brought revolutionary changes to traditional media art expression techniques. In this paper, a partial-pixel interpolation technique based on convolutional neural network is proposed. Supervised training of convolutional neural networks requires predetermining the input and target output of the network, namely, integer image and fractional image in this paper. To solve the problem that the subpixel sample cannot be obtained, this paper first analyzes the imaging principle of digital image and proposes a subpixel sample generation algorithm based on Gaussian low-pass filter and polyphase sampling. From the perspective of rate distortion optimization, the purpose of pixel motion compensation is to improve the accuracy of interframe prediction. Therefore, this paper defines pixel motion compensation as an interframe regression problem, that is, the mapping process of the reference image integral pixel sample to the current image sample to be encoded. In this paper, a generalized partial-pixel interpolation model is proposed for bidirectional prediction. The partial-pixel interpolation of bidirectional prediction is regarded as a binary regression model; that is, the integral pixel reference block in two directions is mapped to the current block to be coded. It further studies how to apply the trained digital images to media art design more flexibly and efficiently.