An antibiotic release system triggered by ultrasound (US) was investigated using chitosan (CS)/ethylene glycol diglycidyl ether (EGDE) hydrogel carriers with amoxicillin (Amox) drug. Different CS concentrations of 1.5, 2, 2.5, and 3 wt % were gelled with EGDE and Amox was entrapped in the hydrogel carrier; the accelerated release was observed as triggered by 43 kHz US exposure at different US output powers ranging from 0 to 35 W. Among these CS hydrogel systems, the degree of accelerated Amox release depended on the CS concentration for the hydrogelation and the matrix with 2 wt % CS exhibited efficient Amox release at 35 W US power with around 19 μg/mL. The drug released with time was fitted with Higuchi and Korsmeyer−Peppas models, and the enhancement was caused by US aiding drug diffusion within the hydrogel matrix by a non-Fickian diffusion mechanism. The US effect on the viscoelasticity of the hydrogel matrix indicated that the matrix became somewhat softened by the US exposure to the dense hydrogels for 2.5 and 3% CS/EGDE, while the degree of softening was slightly marked in the CS/EGDE hydrogels prepared with 1.5 and 2% CS concentration. Such US softening also aided drug diffusion within the hydrogel matrix, suggesting an enhanced Amox release.