Objectives: The aim of this study is a biological application of focused ion beam-scanning electron microscopy (FIB-SEM) to demonstrate serial sectional images of skeletal tissues, here presenting the ultrastructure of 1) cartilaginous extracellular fibrils and 2) osteoblastic cytoplasmic processes.Methods: Seven weeks-old female wild-type mice were fixed with half-Karnovsky solution and subsequent OsO4, and the tibiae were extracted for block staining prior to observation under transmission electron microscope (TEM) and FIB-SEM.Results: TEM showed the fine fibrillar, but somewhat amorphous ultrastructure of the intercolumnar septa in the growth plate cartilage. Alternatively, FIB-SEM revealed bundles of stout fibrils at regular intervals paralleling the septa's longitudinal axis, as well as vesicular structures embedded in the cartilaginous matrix of the proliferative zone. In the primary trabeculae, both TEM and FIB-SEM showed several osteoblastic cytoplasmic processes on the osteoid, with numbers higher than those seen in the bone matrix. FIB-SEM revealed the agglomeration of cytoplasmic processes beneath the osteoblasts, which formed a tubular continuum extending from those cells. Based on these findings, we postulated that osteoblasts not only extend their cytoplasmic processes through to the bone matrix, but also stack these cell processes on the osteoid of the primary trabeculae.
Conclusion:Taken together, it is likely that FIB-SEM imaging strategy on serial sections may successfully deliver new insights on the ultrastructure of cartilage and bone tissues.
words