Tannerella serpentiformis is a health-associated Gram-negative oral anaerobe, while its closest phylogenetic relative is the periodontal pathogen Tannerella forsythia. The pathogen employs glycan mimicry through protein O-glycosylation, displaying a terminal nonulosonic acid aiding in evasion of host immune recognition. Like T. forsythia, T. serpentiformis cells are covered with a 2D-crystalline S-layer composed of two abundant S-layer glycoproteins-TssA and TssB. In this study, we elucidated the structure of the O-linked glycans of T. serpentiformis using 1D and 2D NMR spectroscopy analyzing S-layer glycopeptides and β-eliminated glycans. We found that T. serpentiformis produces two highly fucosylated, branched glycoforms carrying non-carbohydrate modifications, with the structure [2-OMe-Fuc-(α1,2)]-4-OMe-Glc-(β1,3)-[Fuc-(α1,4)]-2-NAc-GlcA-(β1,4)-[3-NH2, 2,4-OMe-Fuc-(α1,3)]-Fuc-(α1,4)-Xyl-(β1,4)-[3-OMe-Fuc-(α1,3)]-GlcA-(α1,2)-[Rha-(α1,4]-Gal, where the 3OMe-Fuc is variable; each glycoform contains a rare 2,4-methoxy, 3-amino-modified fucose. These glycoforms support the hypothesis that nonulosonic acid is a hallmark of pathogenic Tannerella species. A combined glycoproteomics and bioinformatics approach identified multiple sites within TssA (14 sites) and TssB (21 sites) to be O-glycosylated. LC–MS/MS confirmed the presence of the Bacteroidetes O-glycosylation motif (D)(S/T) (L/V/T/A/I) in Tannerella species, including the newly identified candidate “N” for the third position. Alphfold2 models of the S-layer glycoproteins were created revealing an almost uniform spatial distribution of the two glycoforms at the N-terminal two thirds of the proteins supported by glycoproteomics, with glycans facing outward. Glycoproteomics identified 921 unique glycopeptide sequences corresponding to 303 unique UniProt IDs. GO-term enrichment analysis versus the entire T. serpentiformis proteome classified these proteins as mainly membrane and cell periphery-associated glycoproteins, supporting a general protein O-glycosylation system in T. serpentiformis.