The activation of ␦-opioid receptors (DORs) in the caudateputamen nucleus (CPN) produces regionally distinct changes in motor functions, many of which are also influenced by opioids active at -opioid receptors (MORs). These actions most likely occur in MOR-enriched patch compartments in the CPN. To determine the functional sites for DOR activation and potential interactions involving MOR in these regions, immunoperoxidase and immunogold-silver labeling methods were applied reversibly for the ultrastructural localization of DOR and MOR in single rat brain sections containing patches of the CPN. DOR immunoreactivity was commonly seen within the cytoplasm of spiny and aspiny neurons, many of which also expressed MOR. In dendrites and spines, DOR labeling was preferentially localized to membranes of the smooth endoplasmic reticulum and spine apparatus, whereas MOR showed a prominent plasmalemmal distribution. DOR-and/or MOR-labeled spines received asymmetric, excitatory synapses, some of which showed notable perforations, suggesting the involvement of these receptors in activity-dependent synaptic plasticity. DORs were more frequently detected than were MORs within axon terminals that formed either asymmetric synapses with spine heads or symmetric synapses with spine necks. Our results suggest that in striatal patches, DORs, often in cooperation with MORs, play a direct modulatory role in controlling the postsynaptic excitability of spines, whereas presynaptic neurotransmitter release onto spines is mainly influenced by DOR activation. In comparison with MOR, the prevalent association of DOR with cytoplasmic organelles that are involved in intracellular trafficking of cell surface proteins suggests major differences in availability of these receptors to extracellular opioids.