Previous work has suggested that "calcospherulites" actively participate in the mineralization of developing and healing bone. This study sought to directly test this hypothesis by developing a method to isolate calcospherulites and analyzing their capacity to seed mineralization of fibrillar collagen. The periosteal surface of juvenile rat tibial diaphysis was enriched in spherulites of ~0.5-micron diameter exhibiting a Ca/P ratio of 1.3. Their identity as calcospherulites was confirmed by their uptake of calcein at the tibial mineralization front 24 h following in vivo injection. Periosteum was dissected and unmineralized osteoid removed by collagenase in order to expose calcospherulites. Calcein-labeled calcospherulites were then released from the mineralization front by dispase digestion and isolated via fluorescence flow sorting. X-ray diffraction analysis revealed they contained apatite crystals (c-axis length of 17.5 ± 0.2 nm), though their Ca/P ratio of 1.3 is lower than that of hydroxyapatite. Much of their non-mineral phosphorous content was removed by icecold ethanol, elevating their Ca/P ratio to 1.6, suggesting the presence of phospholipids. Western * Calcospherulites (calco: calcium salt + spherulite: spherical crystalline body); calcium-containing, spherical bodies have also been referred to as calcified microspheres, mineral clusters, crystal ghost aggregates, calcification nodules, calcospherites, and small calcified spheres.Address correspondence to: Ronald J. Midura, Dept. of Biomedical Engineering-ND20, Cleveland Clinic, 9500 Euclid Ave., Cleveland, Ohio, 44195; Tel. 216 445-3212 (phone); Fax. 216 444-9198; E-mail: midurar@ccf.org. Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
NIH Public Access
Author ManuscriptBone. Author manuscript; available in PMC 2008 December 1.
Published in final edited form as:Bone. 2007 December ; 41(6): 1005-1016.
NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript blot analyses showed the presence of bone matrix proteins and type I collagen in these preparations. Incubating isolated calcospherulites in collagen hydrogels demonstrated that they could seed a mineralization reaction on type I collagen fibers in vitro. Ultrastructural analyses revealed crystals on the collagen fibers that were distributed rather uniformly along the fiber lengths. Furthermore, crystals were observed at distances well away from the observed calcospherulites. Our results directly support an active role for calcospherulites in inducing the mineralization of type I collagen fibers at the mineralization front of bone.