This paper proposes a validation-comparison method for burned area (BA) products. The technique considers: (1) bootstrapping of scenes for validation-comparison and (2) permutation tests for validation. The research focuses on the tropical regions of Northern Hemisphere South America and Northern Hemisphere Africa and studies the accuracy of the BA products: MCD45, MCD64C5.1, MCD64C6, Fire CCI C4.1, and Fire CCI C5.0. The first and second parts consider methods based on random matrix theory for zone differentiation and multiple ancillary variables such as BA, the number of burned fragments, ecosystem type, land cover, and burned biomass. The first method studies the zone effect using bootstrapping of Riemannian, full Procrustes, and partial Procrustes distances. The second method explores the validation by using distance permutation tests under uncertainty. The results refer to Fire CCI 5.0 with the best BA description, followed by MCD64C6, MCD64C5.1, MCD45, and Fire CCI 4.1. It was also found that biomass, total BA, and the number of fragments affect the BA product accuracy.