Species differences in inorganic arsenic tolerance were investigated by comparing the responses of Bacillus subtilis (B. subtilis) and Bacillus thuringiensis (B. thuringiensis) to elevated concentrations of As(III) and As(V). The cell densities in treatments were always lower during the experiment compared to controls, with the exception of exposure to 1.0 mg As(V) l(-1) on the first day. It was also found that relative growth rate (RGR) of B. thuringiensis was lower than that of B. subtilis. Furthermore, RGR of each Bacillus species was negative correlation with toxicity of inorganic arsenic. However, total cell number still increased in each treatment according to cell density and RGR assays. Superoxide dismutase (SOD) activity of both Bacillus species was promoted by As(III) and As(V), especially under high arsenic concentration condition. In addition, SOD activity of B. thuringiensis was higher than that of B. subtilis during the same exposure time. In lipid peroxidation assay, thiobarbituric acid-reactive substances (TBARS) content of each Bacillus species had a significant increase with increment of arsenic concentration. Moreover, significant difference was observed between the two Bacillus species under high arsenic concentration. TBARS content of B. thuringiensis was higher than that of B. subtilis, indicating that effect of arsenic on cell membranes of B. thuringiensis was much more than that of B. subtilis. These results suggest that the two Bacillus species could adapt and live in high arsenic aquifers, although their growth and cell membranes were affected by As treatment in a way.