We present Chandra HETG spectra of seven cataclysmic variables. We find that they divide unambiguously into two distinct types. Spectra of the first type are remarkably well fit by a simple cooling flow model, which assumes only steady-state isobaric radiative cooling. The maximum temperature, kT max , and the normalization, which provides a highly precise measurement of the accretion rate, are the only free parameters of this model. Spectra of the second type are grossly inconsistent with a cooling flow model. They instead exhibit a hard continuum, and show strong H-like and He-like ion emission but little Fe L-shell emission, which is consistent with expectations for line emission from a photoionized plasma. Using a simple photoionization model, we argue that the observed line emission for these sources can be driven entirely by the hard continuum. The physical significance of these two distinct types of X-ray spectra is also explored.