Ionic liquid matrices (ILMs) were tested as MALDI matrices for quantification of oligodeoxynucleotides (ODNs), peptides, and small proteins. Good calibrations with high linearity and reproducibility were achieved over a broad concentration range for all the tested ILMs in spite of their different physical states. However, the standard deviation is higher for ILMs that are solid with visible crystals. The experimental results indicate various ILMs have different sensitivity owing to changes in their cation components. More importantly, we found that the slopes of the calibration curves correlate with the inverse of the peptide molecular weights, presenting an opportunity to predict a priori, the relative sensitivities (slopes of calibration plots) for various analytes that have similar hydrophobicites.