One of the most enigmatic regions of the solar atmosphere is the transition region ( TR), corresponding to plasmas with temperatures intermediate of the cool, few thousand K, chromosphere and the hot, few million K, corona. The traditional view is that the TR emission originates from a thin thermal interface in hot coronal structures, connecting their chromosphere with their corona. This paradigm fails badly for cool plasmas (%T < 10 5 K ), since it predicts emission orders of magnitude less than what it is observed. It was therefore proposed that the ''missing'' TR emission could originate from tiny, isolated from the hot corona, cool loops at TR temperatures. A major problem in investigating this proposal is the very small sizes of the hypothesized cool loops. Here, we report the first spatially resolved observations of subarcsecond-scale looplike structures seen in the Ly line made by the Very High Angular Resolution Ultraviolet Telescope (VAULT). The subarcsecond (%0.3 00 ) resolution of VAULT allows us to directly view and resolve looplike structures in the quiet Sun network. We compare the observed intensities of these structures with simplified radiative transfer models of cool loops. The reasonable agreement between the models and the observations indicates that an explanation of the observed fine structure in terms of cool loops is plausible.