Black carrot (Daucus carota L. ssp. sativus var. atroburens) is a root vegetable with anthocyanins as major phenolic compounds. The accumulation of phenolic compounds is a common response to UV-B exposure, acting as protective compounds and as antioxidants. In the present study, black carrot plants grown under a 12-h photoperiod were supplemented with UV-B radiation (21.6 kj m−2 day−1) during the last two weeks of growth. Carrot taproots and tops were harvested separately, and the effect of the UV-B irradiance was evaluated in terms of size (biomass and length), total monomeric anthocyanin content (TMC), total phenolic content (TPC), and phytohormones levels. The results showed that UV-B irradiance promoted plant growth, as shown by the elevated root (30%) and top (24%) biomass, the increased TMC and TPC in the root (over 10%), and the increased TPC of the top (9%). A hormone analysis revealed that, in response to UV-B irradiance, the levels of abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) decreased in tops while the level of the cytokinins cis-zeatin (cZ) and trans-zeatinriboside (tZR) increased in roots, which correlated with an amplified growth and the accumulation of anthocyanins and phenolic compounds. Beyond the practical implications that this work may have, it contributes to the understanding of UV-B responses in black carrot.