The effect of high nutrient levels of copper on the low-molecular-weight copper-proteins of leaves from plants of two cultivars of Pisum sativum L., with different sensitivity to copper, was investigated. Gel-filtration chromatography of leaf extracts from Cu-tolerant and Cu-sensitive plants grown with 1 μM Cu(II), showed the presence of only two copper peaks (I and II), but growth of plants with 240 μM Cu(II) induced two additional copper fractions (III and IV). Fractions II and III were purified by solvent extraction, gel-filtration and ion-exchange chromatography, and their molecular weights, subunit sizes, absorption spectra, metalprotein stoichiometry and amino-acid contents were determined. Fraction II was a polypeptide of Mr 15000 composed of a single chain. The purification of fraction III produced a copper-containing fraction (III-1) of Mr 3700, and a copper-protein (III-2) with an Mr, by sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis, of 66000. The metal contents of fractions III-1 and III-2 were higher in Cu-tolerant than in Cu-sensitive plants. On the basis of amino-acid analyses, fraction III-1 appeared to be complexes of Cu(II)-poly-isoleucine and Cu(II)-poly-leucine. The results rule out the existence, in pea leaves, of any protein similar to either animal metallothioneins or to any of the low-molecularweight metal-binding proteins or peptides described in other plants and reported to be involved in metal tolerance. In the mechanism of copper tolerance at the leaf level, fractions III-1 (Mr 3700), III-2 (Mr 66000), and IV (Mr 2000) appear to have a role, fraction IV being specifically induced in the tolerant cultivar by Cu(II). Fractions III-1 and III-2 could participate in a different mechanism, adaptive in character, involving an enhanced capacity to bind copper in Cu-tolerant plants.