2018
DOI: 10.4995/riai.2018.10229
|View full text |Cite
|
Sign up to set email alerts
|

Una Revisión Sistemática de Métodos para Localizar Automáticamente Objetos en Imágenes

Abstract: <p>Actualmente, muchas aplicaciones requieren localizar de forma precisa los objetos que aparecen en una imagen, para su posterior procesamiento. Este es el caso de la inspección visual en la industria, los sistemas de diagnóstico clínico asistido por computador, la detección de obstáculos en vehículos o en robots, entre otros. Sin embargo, diversos factores como la calidad de la imagen y la apariencia de los objetos a detectar, dificultan la localización automática. En este artículo realizamos una revis… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
8
0
3

Year Published

2019
2019
2022
2022

Publication Types

Select...
7
1

Relationship

2
6

Authors

Journals

citations
Cited by 13 publications
(11 citation statements)
references
References 72 publications
0
8
0
3
Order By: Relevance
“…Yang et al [62] highlighted the problems of variable scale and multi-orientation, designing a detection system based on the Inception [63] architecture and the deformable Position Sensitive RoI pooling (PSRoI) technique to detect curved text. In the case of multi-language text, special characters must be taken into account before deciding which object detection methods to use [64].…”
Section: Text Spotting With Deep Learningmentioning
confidence: 99%
“…Yang et al [62] highlighted the problems of variable scale and multi-orientation, designing a detection system based on the Inception [63] architecture and the deformable Position Sensitive RoI pooling (PSRoI) technique to detect curved text. In the case of multi-language text, special characters must be taken into account before deciding which object detection methods to use [64].…”
Section: Text Spotting With Deep Learningmentioning
confidence: 99%
“…A esto se añaden las limitaciones en la calidad de las imágenes recibidas, la diversidad de los objetos de interés y lo desestructurado de los entornos [3]. De ahí que se necesiten nuevas herramientas de inteligencia artificial para identificar información útil [9] [8].…”
Section: Introductionunclassified
“…The availability of huge amounts of data, hardware resources and machine learning techniques allow to train computers to derive meaningful information from images. Thus, CSEM can be identified with image classification techniques [5], and its content can be explored using object detection methods [6][7][8][9] and object recognition techniques [10][11][12][13].…”
Section: Introductionmentioning
confidence: 99%