Editorial on the Research Topic Protein misfolding, altered mechanisms and neurodegenerationNeurodegenerative diseases (NDs) like Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), Frontotemporal lobe degeneration (FTLD), Polyglutamine diseases such as Huntington's disease (HD), Spinocerebellar ataxias (SCAs) etc., are a group of debilitating disorders that affects millions of people worldwide and have no cure to-date. Despite the advancement in our understanding of molecular and genetic mechanisms underlying these NDs, only a limited symptom-based treatment options are available. As the life expectancy increases there is an increase in the number of ND patients, which will seriously challenge the availability of resources and will impact a nation's economy. There is an urgent need to develop an affordable healthcare system and find effective treatment options to provide better clinical regimens to cure these diseases. NDs affect neurons, neuronal connections associated with memory, cognition, thinking, strength, sensation, movements, learning, co-ordination, and other abilities. Although the causative factors of NDs varies from one to another and the differences in the disease symptoms could be many, these diseases share some common features. One of the common pathological hallmarks among the most NDs is aggregation or deposition of misfolded proteins. Compelling evidence from neuropathological, genetic, animal models studies, and other approaches have strongly supported the fact that accumulation of misfolded protein aggregates triggers a series of detrimental events, which results in synaptic alterations, neuronal cell loss, and significantly contributes toward disease pathogenesis.This Research Topic highlights the new approaches employed to develop therapeutics, which can effectively block or slow down the onset or progression of these fatal NDs. This manuscripts collection highlights the current advances in the field of neurodegenerative disorders, which may help in addressing some of the unanswered questions pertaining to this Research Topic. This collection of manuscripts is divided into three vital categories: (1) Disease mechanisms, (2) Therapeutic perspectives, and (3) Animal model(s). We hope that this topic may help discern the gaps, connect the missing links, improve our current understanding, knowledge related to this topic and open new avenues of research focuses to improve current treatments options against these deadly yet incurable disorders.