Background: The BAHD acyltransferase superfamily exhibits various biological roles in plants, including regulating fruit quality, catalytic synthesizing of terpene, phenolics and esters, and improving stress resistance. However, the copy numbers, expression characteristics and associations with fruit aroma formation of the BAHD genes remain unclear.
Results: In total, 717 BAHD genes were obtained from the genomes of seven Rosaceae, ( Pyrus bretschneideri , Malus domestica , Prunus avium , Prunus persica , Fragaria vesca , Pyrus communis and Rubus occidentalis ). Based on the classifications in model plants, we divided the BAHD family genes into seven groups, I-a, I-b, II-a, II-b, III-a, IV and V. An intra-species synteny analysis detected 78 syntenic gene pairs among the seven Rosaceae species. Dispersed gene duplication occurred frequently in all the investigated species. Different modes of duplicated gene pairs identified in each investigated species revealed that the Ka/Ks ratios were less than one, indicating that they evolved through purifying selection. Based on the correlation analysis between the ester content and expression levels of BAHD genes at different developmental stages, we selected five genes for verification as assessed by qRT-PCR. Pbr020016.1 , Pbr019034.1 , Pbr014028.1 and Pbr029551.1 are important candidate genes involved in aroma formation during pear fruit development.
Conclusion: We have thoroughly annotated the BAHD superfamily genes and performed a comprehensive comparative analysis of their colinearity, phylogenetic relationships and gene duplication patterns in seven Rosaceae species, and we also obtained four candidate genes involved in aroma synthesis in pear fruit. These results provide a theoretical basis for future studies of the specific biological functions of BAHD superfamily members and the improvement of pear fruit quality.
Keywords : BAHD, pear, evolution, Rosaceae, transcriptome, volatile esters