Dynamic Symbolic Execution (DSE) is an important method for testing of programs. An important system on DSE is KLEE [1] which inputs a C/C++ program annotated with symbolic variables, compiles it into LLVM, and then emulates the execution paths of LLVM using a specified backtracking strategy. The major challenge in symbolic execution is path explosion. The method of abstraction learning [7] has been used to address this. The key step here is the computation of an interpolant to represent the learned abstraction. TracerX, our tool, is built on top of KLEE and it implements and utilizes abstraction learning. The core feature in abstraction learning is subsumption of paths whose traversals are deemed to no longer be necessary due to similarity with already-traversed paths. Despite the overhead of computing interpolants, the pruning of the symbolic execution tree that interpolants provide often brings significant overall benefits. In particular, TracerX can fully explore many programs that would be impossible for any non-pruning system like KLEE to do so.