Stabilization of actin filaments is critical for supporting actomyosin-based contractility and for maintaining stable cellular structures. Tropomyosin is a well-characterized ubiquitous actin stabilizer that inhibits ADF/cofilindependent actin depolymerization. Here, we show that UNC-87, a calponin-related Caenorhabditis elegans protein with seven calponin-like repeats, competes with ADF/cofilin for binding to actin filaments and inhibits ADF/cofilin-dependent filament severing and depolymerization in vitro. Mutations in the unc-87 gene suppress the disorganized actin phenotype in an ADF/cofilin mutant in the C. elegans body wall muscle, supporting their antagonistic roles in regulating actin stability in vivo. UNC-87 and tropomyosin exhibit synergistic effects in stabilizing actin filaments against ADF/cofilin, and direct comparison reveals that UNC-87 effectively stabilizes actin filaments at much lower concentrations than tropomyosin. However, the in vivo functions of UNC-87 and tropomyosin appear different, suggesting their distinct roles in the regulation of actomyosin assembly and cellular contractility. Our results demonstrate that actin binding via calponin-like repeats competes with ADF/cofilin-driven cytoskeletal turnover, and is critical for providing the spatiotemporal regulation of actin filament stability.