Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Abstract. The discussion in the preceding paper is restricted to the uncertainties in magnetic-field-line tracing in the magnetosphere resulting from published standard errors in the spherical harmonic coefficients that define the axisymmetric part of the internal geomagnetic field (i.e. g 0 n 6 g 0 n ). Numerical estimates of these uncertainties based on an analytic equation for axisymmetric field lines are in excellent agreement with independent computational estimates based on stepwise numerical integration along magnetic field lines. This comparison confirms the accuracy of the computer program used in the present paper to estimate the uncertainties in magnetic-field-line tracing that arise from published standard errors in the full set of spherical harmonic coefficients, which define the complete (non-axisymmetric) internal geomagnetic field (i.e. ). An algorithm is formulated that greatly reduces the computing time required to estimate these uncertainties in magnetic-field-line tracing. The validity of this algorithm is checked numerically for both the axisymmetric part of the internal geomagnetic field in the general case (1 n 10) and the complete internal geomagnetic field in a restrictive case (0 m n; 1 n 3). On this basis it is assumed that the algorithm can be used with confidence in those cases for which the computing time would otherwise be prohibitively long. For the complete internal geomagnetic field, the maximum characteristic uncertainty in the geocentric distance of a field line that crosses the geomagnetic equator at a nominal dipolar distance of 2 R E is typically 100 km. The corresponding characteristic uncertainty for a field line that crosses the geomagnetic equator at a nominal dipolar distance of 6 R E is typically 500 km. Histograms and scatter plots showing the characteristic uncertainties associated with magneticfield-line tracing in the magnetosphere are presented for a range of illustrative examples. Finally, estimates are given for the maximum uncertainties in the locations of the conjugate points of selected geophysical observatories. Numerical estimates of the uncertainties in magnetic-field-line tracing in the magnetosphere, including the associated uncertainties in the locations of the conjugate points of geophysical observatories, should be regarded as ''first approximations'' in the sense that these estimates are only as accurate as the published standard errors in the full set of spherical harmonic coefficients. As in the preceding paper, however, all computational techniques developed in this paper can be used to derive more realistic estimates of the uncertainties in magnetic-field-line tracing in the magnetosphere, following further progress in the determination of more accurate standard errors in the spherical harmonic coefficients.
Abstract. The discussion in the preceding paper is restricted to the uncertainties in magnetic-field-line tracing in the magnetosphere resulting from published standard errors in the spherical harmonic coefficients that define the axisymmetric part of the internal geomagnetic field (i.e. g 0 n 6 g 0 n ). Numerical estimates of these uncertainties based on an analytic equation for axisymmetric field lines are in excellent agreement with independent computational estimates based on stepwise numerical integration along magnetic field lines. This comparison confirms the accuracy of the computer program used in the present paper to estimate the uncertainties in magnetic-field-line tracing that arise from published standard errors in the full set of spherical harmonic coefficients, which define the complete (non-axisymmetric) internal geomagnetic field (i.e. ). An algorithm is formulated that greatly reduces the computing time required to estimate these uncertainties in magnetic-field-line tracing. The validity of this algorithm is checked numerically for both the axisymmetric part of the internal geomagnetic field in the general case (1 n 10) and the complete internal geomagnetic field in a restrictive case (0 m n; 1 n 3). On this basis it is assumed that the algorithm can be used with confidence in those cases for which the computing time would otherwise be prohibitively long. For the complete internal geomagnetic field, the maximum characteristic uncertainty in the geocentric distance of a field line that crosses the geomagnetic equator at a nominal dipolar distance of 2 R E is typically 100 km. The corresponding characteristic uncertainty for a field line that crosses the geomagnetic equator at a nominal dipolar distance of 6 R E is typically 500 km. Histograms and scatter plots showing the characteristic uncertainties associated with magneticfield-line tracing in the magnetosphere are presented for a range of illustrative examples. Finally, estimates are given for the maximum uncertainties in the locations of the conjugate points of selected geophysical observatories. Numerical estimates of the uncertainties in magnetic-field-line tracing in the magnetosphere, including the associated uncertainties in the locations of the conjugate points of geophysical observatories, should be regarded as ''first approximations'' in the sense that these estimates are only as accurate as the published standard errors in the full set of spherical harmonic coefficients. As in the preceding paper, however, all computational techniques developed in this paper can be used to derive more realistic estimates of the uncertainties in magnetic-field-line tracing in the magnetosphere, following further progress in the determination of more accurate standard errors in the spherical harmonic coefficients.
[1] We have analyzed electron angular distributions recorded near Mars over a period of 7 years in order to constrain the topology of magnetic field lines near Mars. We used 63 million pitch angle distributions of 115 eV electrons measured at $400 km altitudes by the Mars Global Surveyor (MGS) spacecraft and classified them according to their shape. Closed magnetic field lines are associated with the Martian crustal magnetic fields and are identified on the nightside by the presence of plasma voids or two-sided loss cones (trapped distributions). Trapped distributions on the nightside are most often observed in regions surrounding moderate or strong crustal fields, indicating a source process such as reconnection populates the outer layers of closed magnetic field regions. Open magnetic field lines are identified in regions of strong crustal magnetic field by the absence of field-aligned electrons returning from the planet (loss cones). In regions far from crustal sources many field lines intersect the collisional atmosphere. On the Martian dayside, closed field lines are identified by the presence of trapped or fully isotropic distributions, and they occur at times when ionospheric photoelectron features are evident in MGS electron energy spectra. Variability of the dominant pitch angle distribution shape in certain regions suggests that Martian magnetic field topology is dynamic and is controlled by external conditions.
Magnetosphere-ionosphere coupling is a particularly important process that regulates and controls magnetospheric dynamics such as storms and substorms. However, in order to understand magnetosphere-ionosphere coupling it is necessary to understand how regions of the magnetosphere are connected to the ionosphere. It has been proposed that this connection may be established by firing electron beams from satellites that can reach an ionospheric footpoint creating detectable emissions. This type of experiment would greatly aid in identifying the relationship between convection processes in the magnetotail and the ionosphere and how the plasma sheet current layer evolves during the growth phase preceding substorms. For practical purposes, the use of relativistic electron beams with kinetic energy on the order of 1 MeV would be ideal for detectability. However, Porazik et al. (2014) has shown that, for relativistic particles, higher order terms of the magnetic moment are necessary for consideration of the ionospheric accessibility of the beams. These higher order terms are related to gradients and curvature in the magnetic field and are typically unimportant unless the beam is injected along the magnetic field direction, such that the zero order magnetic moment is small. In this article, we address two important consequences related to these higher order terms. First, we investigate the consequences for satellites positioned in regions subject to magnetotail stretching and demonstrate systematically how curvature affects accessibility. We find that curvature can reduce accessibility for beams injected from the current sheet, but can increase accessibility for beams injected just above the current sheet. Second, we investigate how detectability of ionospheric precipitation of variable energy field-aligned electron beams could be used as a constraint on field-line curvature, which would be valuable for field-line reconstruction and/or stability analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.