The hot disk transient plane source (TPS) method is a widely used standard technique (ISO 22007-2) for the characterization of thermal properties of materials, especially the thermal conductivity, k. Despite its well-established reliability for a wide variety of common materials, the hot disk TPS method is also known to suffer from a substantial systematic errors when applied to low-k thermal insulation materials, because of the discrepancies between the idealized model used for data analysis and the actual heat transfer process. Here, we present a combined numerical and experimental study on the influence of the geometry of hot disk sensor on measured value of lowk materials. We demonstrate that the error is strongly affected by the finite thickness and thermal mass of the sensor's insulation layer was well as the corresponding increase of the effective heater size beyond the radius of the embedded metal heater itself. We also numerically investigate the dependence of the error on the sample thermal properties, confirming that the errors are worse in low-k samples. A simple correction function is also provided, which converts the apparent (erroneous) result from a standard hot disk TPS measurement to a more accurate value. A standard polyimide sensor was also optimized using both wet and dry etching to provide more accurate measurement directly. Experimentally corrected value of k for Airloy® x56 aerogel and a