Uncertainty-Aware Health Diagnostics via Class-Balanced Evidential Deep Learning
Tong Xia,
Ting Dang,
Jing Han
et al.
Abstract:Uncertainty quantification is critical for ensuring the safety of deep learning-enabled health diagnostics, as it helps the model account for unknown factors and reduces the risk of misdiagnosis. However, existing uncertainty quantification studies often overlook the significant issue of class imbalance, which is common in medical data. In this paper, we propose a class-balanced evidential deep learning framework to achieve fair and reliable uncertainty estimates for health diagnostic models. This framework ad… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.