Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In most re-identification approaches, embedding vectors are compared to identify the best match for a given query. However, this comparison does not take into account whether the encoded information in the embedding vectors was extracted reliably from the input images. We propose the first attempt that illustrates how all three types of uncertainty, namely model uncertainty (also known as epistemic uncertainty), data uncertainty (also known as aleatoric uncertainty), and distributional uncertainty, can be estimated for embedding vectors. We provide evidence that we do indeed estimate these types of uncertainty, and that each type has its own value for improving re-identification performance. In particular, while the few state-of-the-art approaches that employ uncertainty for re-identification during inference utilize only data uncertainty to improve single-shot re-identification performance, we demonstrate that the estimated model uncertainty vector can be utilized to modify the feature vector. We explore the best method for utilizing the estimated model uncertainty based on the Market-1501 dataset and demonstrate that we are able to further enhance the performance above the already strong baseline UAL. Additionally, we show that the estimated distributional uncertainty resembles the degree to which the current sample is out-of-distribution. To illustrate this, we divide the distractor set of the Market-1501 dataset into four classes, each representing a different degree of out-of-distribution. By computing a score based on the estimated distributional uncertainty vector, we are able to correctly order the four distractor classes and to differentiate them from an in-distribution set to a significant extent.
In most re-identification approaches, embedding vectors are compared to identify the best match for a given query. However, this comparison does not take into account whether the encoded information in the embedding vectors was extracted reliably from the input images. We propose the first attempt that illustrates how all three types of uncertainty, namely model uncertainty (also known as epistemic uncertainty), data uncertainty (also known as aleatoric uncertainty), and distributional uncertainty, can be estimated for embedding vectors. We provide evidence that we do indeed estimate these types of uncertainty, and that each type has its own value for improving re-identification performance. In particular, while the few state-of-the-art approaches that employ uncertainty for re-identification during inference utilize only data uncertainty to improve single-shot re-identification performance, we demonstrate that the estimated model uncertainty vector can be utilized to modify the feature vector. We explore the best method for utilizing the estimated model uncertainty based on the Market-1501 dataset and demonstrate that we are able to further enhance the performance above the already strong baseline UAL. Additionally, we show that the estimated distributional uncertainty resembles the degree to which the current sample is out-of-distribution. To illustrate this, we divide the distractor set of the Market-1501 dataset into four classes, each representing a different degree of out-of-distribution. By computing a score based on the estimated distributional uncertainty vector, we are able to correctly order the four distractor classes and to differentiate them from an in-distribution set to a significant extent.
Uncertainty-aware soft sensors in sign language recognition (SLR) integrate methods to quantify and manage the uncertainty in their predictions. This is particularly crucial in SLR due to the variability in sign language gestures and differences in individual signing styles. Managing uncertainty allows the system to handle variations in signing styles, lighting conditions, and occlusions more effectively. While current techniques for handling uncertainty in SLR systems offer significant benefits in terms of improved accuracy and robustness, they also come with notable disadvantages. High computational complexity, data dependency, scalability issues, sensor and environmental limitations, and real-time constraints all pose significant hurdles. The aim of the work is to develop and evaluate a Type-2 Neutrosophic Hidden Markov Model (HMM) for SLR that leverages the advanced uncertainty handling capabilities of Type-2 neutrosophic sets. In the suggested soft sensor model, the Foot of Uncertainty (FOU) allows Type-2 Neutrosophic HMMs to represent uncertainty as intervals, capturing the range of possible values for truth, falsity, and indeterminacy. This is especially useful in SLR, where gestures can be ambiguous or imprecise. This enhances the model’s ability to manage complex uncertainties in sign language gestures and mitigate issues related to model drift. The FOU provides a measure of confidence for each recognition result by indicating the range of uncertainty. By effectively addressing uncertainty and enhancing subject independence, the model can be integrated into real-life applications, improving interactions, learning, and accessibility for the hearing-impaired. Examples such as assistive devices, educational tools, and customer service automation highlight its transformative potential. The experimental evaluation demonstrates the superiority of the Type-2 Neutrosophic HMM over the Type-1 Neutrosophic HMM in terms of accuracy for SLR. Specifically, the Type-2 Neutrosophic HMM consistently outperforms its Type-1 counterpart across various test scenarios, achieving an average accuracy improvement of 10%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.