Medical Imaging 2023: Image Processing 2023
DOI: 10.1117/12.2653155
|View full text |Cite
|
Sign up to set email alerts
|

Uncertainty-aware transformer model for anatomical landmark detection in paraspinal muscle MRIs

Abstract: Anatomical landmark identification is crucial in the registration of medical images in a wide range of clinical applications. Various machine and deep learning (DL) techniques have been proposed to annotate anatomical landmarks automatically. However, very few have taken advantage of the more recent Transformer models that do not suffer from inductive bias of convolutional neural networks as well as incorporating uncertainty assessments. This paper proposes a novel technique based on the Swin Transformer V2 (S… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 13 publications
0
0
0
Order By: Relevance