Abstract. There is a strong motivation for smaller pixels based on enduser demand for lower-cost, higher-resolution camera systems both for military and commercial applications. Uncooled detector technology fits the need for a low size, weight, and power system. We explore the tradeoffs and challenges to achieving pixel designs smaller than the current 17-μm state-of-the-art detectors without loss in sensitivity or resolution. For illustration we consider a 12-μm design. We also address modulation transfer function issues as the pixel size shrinks, and examine the difference between the performance of present devices and the theoretical performance limit for uncooled detectors.
IntroductionFifteen to 20 years ago, developments in the semiconductor industry enabled the earlier generations of uncooled focal plane array (FPAs) and cameras with small format, 160 by 120 and then 320 by 240 array sizes with large pixels, generally in the neighborhood of 50 × 50 μm 2 . The detector material was usually vanadium oxide (VOx), alpha-silicon (a-Si) or ferroelectrics. The wave band over which the optics and detectors of a camera were generally designed to receive and respond to radiation that is approximately 7.5 AE .0.5 μm 2 to 13 AE 1 μm 2 . The user community, mainly the military at that time, specified camera operational requirements, which were typically around a 50-mK noise equivalent temperature difference (NETD), a frame rate of 30 Hz, and commensurate time constants for applications such as a thermal weapons sight or helmet-mounted goggles. The sensitivity of the detectors was far from the fundamental limits and thus drove the need for optics with an F/number near 1.0 to obtain the desired NETD. The modulation transfer function (MTF) of the system was almost never dominated by the MTF of the optics. Over the years, the semiconductor industry has made advances with ever smaller design rules, enabling the uncooled camera manufacturers to further push their designs and performance. Pixel sizes have been reduced from 50 to ∼25 μm, then to 17 μm, and today uncooled camera manufacturers are looking into developing FPAs with pixels in the range of 10 to 13 μm while also increasing the resolution of the arrays to a nominal 1 K × 1 K format.1,2 The user-desired operational specifications generally require a 35-to 50-mK NETD and a 10-to 12-ms time constant with a frame rate of 30 or 60 Hz. A nominal F/1 optic is still required to obtain this sensitivity. There is also interest in further shortening the time constant to 5 ms or less while maintaining good NETD performance for higher speed motion applications. This raises a number of considerations, practical and theoretical, related to the benefits of making uncooled detector pixels much smaller than 17 μm. This paper explores some of those considerations.