Aims: Generalised epilepsy is thought to involve distributed brain networks. However, the molecular and cellular factors that render different brain regions more vulnerable to epileptogenesis remain largely unknown. We aimed to investigate epilepsy-related morphometric similarity network (MSN) abnormalities at the macroscale level and their relationships with microscale gene expressions at the microscale level.Methods: We compared the MSN of genetic generalised epilepsy with generalised tonic-clonic seizure patients (GGE-GTCS, n = 101) to demographically matched healthy controls (HC, n = 150). Cortical MSNs were estimated by combining seven morphometric features derived from structural magnetic resonance imaging for each individual.Regional gene expression profiles were derived from brain-wide microarray measurements provided by the Allen Human Brain Atlas.Results: GGE-GTCS patients exhibited decreased regional MSNs in primary motor, prefrontal and temporal regions and increases in occipital, insular and posterior cingulate cortices, when compared with the HC. These case-control neuroimaging differences were validated using split-half analyses and were not affected by medication or drug response effects. When assessing associations with gene expression, genes associated