Acanthoic acid, a diterpene isolated from the root bark of Acanthopanax koreanum Nakai, possesses diverse pharmacological activities, including anti-inflammatory, anti-diabetic, gastrointestinal protection, and cardiovascular protection. This study is the first to investigate the egg-hatching rates of Drosophila melanogaster affected by acanthoic acid. Notably, male flies supplemented with 10 μM acanthoic acid exhibited a strong increase in hatching rates compared with controls under adverse temperature conditions, suggesting a potential protective effect against environmental stressors. Molecular docking simulations revealed the binding affinities and specific interactions between acanthoic acid and proteins related to male infertility, including SHBG, ADAM17, and DNase I, with binding affinity values of −10.2, −6.8, and −5.8 kcal/mol, respectively. Following the docking studies, molecular dynamic simulations were conducted for a duration of 100 ns to examine the stability of these interactions. Additionally, a total binding energy analysis and decomposition analysis offered insights into the underlying energetic components and identified key contributing residues.